Objective

To determine the stress–strain state of a circular plate.

Reference

S. Timoshenko, Résistance des matériaux, t. 2, Paris, Librairie Polytechnique Ch. Béranger, 1949.

Problem statement

To determine the vertical displacement Z (w) at the centre of the plate, as well as the bending moments at the clamped support.

Design model

A circular plate clamped along its contour subjected to a uniformly distributed load q.

Initial geometry of analytical model

Initial geometry of FE model

a

b


Initial geometry of: a - analytical model; b - FE model

Geometry

Radius of a plate r = 1,2 m.
Thickness h = 0,02 m;

Material properties

Modulus of elasticity Å = 2,0 * 108 kPa.
Poisson's ratio ν = 0,3.

Boundary conditions

Restraints are applied along the outer contour of the plate for all degrees of freedom (DOF) of the slab finite element (Z, uX, uY).

Loads

Load uniformly distributed across the area: q = 10 kPa.

Output data

Design and deformed shapes

Contour plots of vertical displacements Z(w), mm

Design and deformed models (half of a plate is displayed)

Contour plots of vertical displacements Z(w), mm

Mosaic plot of bending moments Ìõ, kN*m/m

Mosaic plot of bending moments Ìy, kN*m/m

à

á


Mosaic plot of bending moments : a - Ìõ, kN*m/m; b - Ìy, kN*m/m

Analytic solution



Mx = −qr2/8
My = −vqr2/8

Comparison of calculation results

Without additional side nodes:

Point The unknown Analytic solution LIRA-FEM Error, %
Centre Displacement w0, mm -2,211 -2,1938 0,7779
Edge Bending moment Mx, kN*m/m 1,17 1,1549 1,2906
Bending moment My, kN*m/m 1,17 1,1519 1,547

With additional side nodes:

Point The unknown Analytic solution LIRA-FEM Error, %
Centre Displacement w0, mm -2,211 -2,2005 0,4749
Edge Bending moment Mx, kN*m/m 1,17 1,1619 0,6923
Bending moment My, kN*m/m 1,17 1,1563 1,1709

Download verification test



If you find a mistake and want to inform us about it, select the mistake, then hold down the CTRL key and click ENTER.

  • 9


Comments

Write