Objective

To determine the stress–strain state of a 3D bar system with elastic restraints subjected to a concentrated load.

Reference

M. Laredo, Résistance des matériaux, Paris, Dunod, 1970, P. 165.

Problem statement

Determine:

  • the vertical displacement Z at the joint of bars AD and HD (point D);

  • the horizontal displacement and rotation at point A;

  • the torsional and bending moments Mx, My, Mz at the support nodes of the 3D system (points A and B).

Design model

The 3D model consists of four bars. The horizontal bars lie orthogonally in two parallel horizontal planes and are connected by vertical bars that are hinged to each other (point H).

At the support nodes of the 3D model (points A and B), rigid restraints are provided for translational and rotational degrees of freedom (DOF) in the plane of the cross-section, and elastic restraints are provided for translational and rotational DOF out of the plane of the cross-section.

At the joint of the upper horizontal bar and the vertical bar (point D) a vertical concentrated load F is applied.

Initial geometry of analytical model

Initial geometry of FE model

a

b


Initial geometry of: a - analytical model; b - FE model

Geometry

Length of horizontal bars L = 2 m;
Length of vertical bars 0,5L = 1 m;
Moments of inertia for a cross-section Iy = Ix = I = 10-6 m4;
Polar moment of inertia (torsional constant) J = 2 * 10-6 m4;
Cross-sectional area A = 0,001 m2.

Material properties

Modulus of elasticity Е = 2,1 * 1011 Pa;
Shear modulus G = 7,875 * 1010 Pa.

Boundary conditions

At point A:
- rigid restraints for the degrees of freedom uY (θY=0), X and Z (uA=wA=0);
- elastic restraints for degrees of freedom Y, uX, uZ:
    Rу = 52500 N/m, Rux = Ruz = 52500 N*m/rad.
At point B:
- rigid restraints for the degrees of freedom uX (θX=0), Y and Z (uB=wB=0);
- elastic restraints for degrees of freedom X, uY, uZ:
    Rх = 52500 Н/м, Ruy = Ruz = 52500 Н*м/рад.
At point Н: hinge.

Loads

Vertical concentrated load F = 10000 Н applied at point D.

Output data

Design and deformed shapes

Design and deformed models

Mosaic plot of vertical displacements along the global Z-axis (w), m

Mosaic plot of horizontal displacements along the global Y-axis (v), m

Mosaic plot of rotation angles about the global X-axis (u), rad*1000

Mosaic plot of vertical displacements along the global Z-axis (w), m

 Mosaic plot of horizontal displacements along the global Y-axis (v), m

Mosaic plot of rotation angles about the global X-axis (u), rad*1000

Diagram of twisting moments Mx, N*m

Diagram of bending moments My, N*m

Diagram of bending moments Мz, N*m

Diagram of twisting moments Мх, N*m
Diagram of bending moments My, N*m
Diagram of bending moments Мz, N*m

Analytic solution

MAx = 5*F*l/64
MAy = 27*F*l/64
MAz = -5*F*l/32
MBx = -27*F*l/64
MBy = -5*F*l/64
MBz = -5*F*l/32
νA = 5*F*l/(64*EI)
θAx = -27*F*l2/(32*EI)
ωD = 373*F*l3/(384*EI)

Comparison of calculation results

Point The unknown Analytic solution LIRA-FEM Error, %
А Moment Мх, N*m 1562,5 1562,3 0,0128
А Moment Му, N*m 8437,5 8438,2 0,083
А Moment Мz, N*m 3125 3124,6 0,0128
B Moment Мх, N*m 1562,5 1562,5 0
B Moment Му, N*m 8437,5 8437,1 0,0047
B Moment Мz, N*m 3125 3125 0
А Displacement νA, m 0,02976 0,02977 0,001
А Rotation angle θAX, rad 0,16071 0,16073 0
D Displacement ωD, m 0,37004 0,37007 0,0027

Download verification test


If you find a mistake and want to inform us about it, select the mistake, then hold down the CTRL key and click ENTER.

  • 33


Comments

Write